Scientists observe a single quantum vibration under normal conditions

When a guitar string is plucked, it vibrates as any vibrating object would, rising and falling like a wave, as the laws of classical physics predict. But under the laws of quantum mechanics, which describe the way physics works at the atomic scale, vibrations should behave not only as waves.

but also as particles. The same guitar string, when observed at a quantum level, should vibrate as individual units of energy known as phonons.

Now scientists at MIT and the Swiss Federal Institute of Technology have for the first time created and observed a single phonon in a common material at room temperature.

Until now, single phonons have only been observed at ultracold temperatures and in precisely engineered, microscopic materials that researchers must probe in a vacuum. In contrast, the team has created and observed single phonons in a piece of diamond sitting in open air at room temperature.

The results, the researchers write in a paper published today in Physical Review X, bring quantum behavior closer to our daily life.

There is a dichotomy between our daily experience of what a vibration is a wave and what quantum mechanics tells us it must be a particle, says Vivishek Sudhir, a postdoc in MIT’s Kavli Institute for Astrophysics and Space Research. Our experiment, because it is conducted at very tangible conditions, breaks this tension between our daily experience and what physics tells us must be the case.

The technique the team developed can now be used to probe other common materials for quantum vibrations. This may help researchers characterize the atomic processes in solar cells, as well as identify why certain materials are superconducting at high temperatures.

From an engineering perspective, the team’s technique can be used to identify common phonon-carrying materials that may make ideal interconnects, or transmission lines, between the quantum computers of the future.

Phonons, the individual particles of vibration described by quantum mechanics, are also associated with heat. For instance, when a crystal, made from orderly lattices of interconnected atoms, is heated at one end, quantum mechanics predicts that heat travels through the crystal in the form of phonons, or individual vibrations of the bonds between molecules.

Single phonons have been extremely difficult to detect, mainly because of their sensitivity to heat. Phonons are susceptible to any thermal energy that is greater than their own.

If phonons are inherently low in energy, then exposure to higher thermal energies could trigger a material’s phonons to excite en masse, making detection of a single photon a needle in a haystack endeavor.

The first efforts to observe single phonons did so with materials specially engineered to harbor very few phonons, at relatively high energies.

These researchers then submerged the materials in nearabsolute zero refrigerators Sudhir describes as brutally, aggressively cold,” to ensure that the surrounding thermal energy was lower than the energy of the phonons in the material.


Sources / Further Reading: Massachusetts Institute of Technology

Leave a Reply

Your email address will not be published. Required fields are marked *